Quantum Computer Science School 2020

January 14-16, 2020
University of Technology Sydney, Australia

The Quantum Computer Science School 2020 will consist of three days of lectures and academic activities, targeting at senior undergraduates and graduate students in Australian and Asian universities. The lecturers are Mingsheng Ying, Luming Duan, Michael Bremner, Troy Lee, and Ran Duan, and the topics include quantum algorithms, quantum programming, quantum supremacy, and matrix multiplication algorithms. This school is co-organised by the University of Technology Sydney and Tsinghua University.

Prague Summer School on Discrete Mathematics 2020

August 24, 2012 – August 28, 2020
Prague, Czechia

Registration deadline: March 15, 2020

A one-week summer school primarily for PhD students and postdocs. Lecture courses given by Subhash Khot (New York University) and Shayan Oveis Gharan (University of Washington).

The 24th Atlanta Lecture Series in Combinatorics and Graph Theory

November 23-24, 2019
Emory University, Atlanta, GA

Registration deadline: November 20, 2019

Emory University, Georgia Tech and Georgia State University, with support from the National Science Foundation and National Security Agency, will continue the series of mini-conferences from 2019-2020. The next and 24th overall of these mini-conferences will be held at Emory University on Nov 23-24, 2019. Speakers will include Jacob Fox (Stanford), Florian Frick (CMU), Andrey Kupavskii (IAS), Guy Moshkovitz (IAS), Shachar Lovett (UCSD), Will Perkins (UIC), Xiaofan Yuan (Georgia Tech), Yufei Zhao (MIT). All talks will be held in Room E208 in the MSC Building.

33rd Conference of the European Chapter on Combinatorial Optimization

June 4-6, 2020
Saint Petersburg, Russia

Submission deadline: February 1, 2020

The 33rd Conference of the European Chapter on Combinatorial Optimization (ECCO 2020) will be held in the beautiful city of St. Petersburg during the white nights season. It will be hosted by St. Petersburg Department of Steklov Mathematical Institute of the Russian Academy of Sciences.

ECCO (European Chapter on Combinatorial Optimization) is a working group of EURO (Association of European Operational Research Societies) that provides an excellent opportunity to discuss recent and important issues in Combinatorial Optimization and its applications.

A special issue of an international refereed journal containing selected full length papers will be dedicated to the conference.

The conference budget includes a limited amount of funds for fee waivers for PhD students from Eastern Europe presenting their work.

Machine Learning for Communication Systems and Networks

September 2-4, 2019
Trinity College Dublin, Dublin, Ireland

The Summer School will include a technical track with lectures and workshops on various aspects of Machine Learning, as well as associated training in areas such as research ethics, career development, communicating research, innovation, and public engagement. It will also include social and networking events. Speakers will include Prof Marco Di Renzo (CentraleSupélec/CNRS), Dr Jakob Hoydis (Nokia Bell Labs France), Dr Irene Macaluso (Trinity College Dublin), Dr Panayotis Mertikopoulos (CNRS, Grenoble), Michaela Blott (Xilinx Research Labs, Ireland), Prof Yong Li (Tsinghua University, Beijing) and Prof Paul Patras (University of Edinburgh).

The Mathematics of Quantum Computation (IIAS@HUJI, Israel)

December 15-19, 2019
IIAS @ Hebrew University of Jerusalem, Israel

Registration deadline: August 23, 2019

The school will introduce TCS and math students and faculty, who are interested in the theoretical aspects of quantum computation, to the beautiful and fascinating mathematical and computational open questions in the area, starting from scratch. No prior knowledge on quantum will be assumed. We hope to reach a point where participants gain initial tools and basic perspective to start working in this area.

The school will consist of several mini-courses, each of two or three hours, about central topics in the area. These include quantum algorithms, quantum error correction, quantum supremacy, delegation and verification, interactive proofs, cryptography, and Hamiltonian complexity. We will emphasize concepts, open questions, and links to mathematics. We will have daily TA sessions with hands-on exercises, to allow for a serious process of learning.

Main speakers: Adam Bouland, Sergey Bravyi, Matthias Christandl, Sandy Irani, Avishay Tal, Thomas Vidick. Additional speakers: Dorit Aharonov, Zvika Brakerski, Or Sattath. (Lists are subject to changes and additions.)

The Autumn school on Machine Learning

October 3-11, 2019
Tbilisi, Georgia

Registration deadline: October 3, 2019

The school will be organized by the International Black Sea University with the support of Shota Rustaveli National Science Foundation of Georgia (SRNSFG). The intended audience of the autumn school includes BSc, MSc and PhD students, researchers as well as industry professionals from the fields of computer science and mathematics.

PapaFest for Christos’ 70th birthday

September 6-8, 2019
Columbia University

We are happy to invite you to Columbia University to celebrate Christos Papadimitriou’s contributions to science on the occasion of his 70th birthday, through a mix of talks, panels, and fun activities. One of world’s leading computer scientists, Christos is best known for his work in computational complexity, helping to expand its foundations, methodology and reach. Using computation as a scientific lens, he has also made seminal contributions to biology and the theory of evolution, economics and game theory—where he helped found the field of algorithmic game theory, artificial intelligence, robotics, databases, networks and the Internet, and more recently the study of the brain. In this 3 day celebration, we will celebrate the wealth of areas that Christos’s work has influenced directly, as well as areas that have been influenced, are being influenced, or might be influenced by the “algorithmic lens.”

Robustness in Learning and Statistics: Past and Future

August 12-15, 2019
UC San Diego

Registration deadline: July 31, 2019

Robust statistics and related topics offer ways to stress test estimators to the assumptions they are making. It offers insights into what makes some estimators behave well in the face of model misspecification, while others do not. In this summer school, we will revisit classic topics in robust statistics from an algorithmic perspective. We will cover recent progress on provably robust and computationally efficient parameter estimation in high-dimensions. We will compare this to other popular models, like agnostic learning and outlier detection. With the foundations in hand, we will explore modern topics like federated learning, semi-random models and connections to decision theory where being robust is formulated in alternative ways. We hope to have time for discussion about open questions like adversarial examples in deep learning, and invite the audience to help us muse about the right definitions to adopt in the first place.